Our Publications

Here, you can find a list of publications by the Mirica Group. After reading through our publication list, take a look at our Research Overview or take our Virtual Lab Tour. If you have questions about our work, please feel free to Contact Us!


Preprints/Manuscripts submitted:

102. Na, H.; Wessel, A. J.; Kim, S.; Baik, M.; Mirica, L. M. Csp3‒H Bond Activation Mediated by a Pd(II) Complex under Mild Conditions. Submitted, ChemRxiv preprint: https://chemrxiv.org/engage/chemrxiv/article-details/65130cb0ade1178b2429b26d.

101. Wallick, R. W.; Chakrabarti, S; Burke, J. H.; Gnewkow, R.; Chae, J. B.; Rossi, T.; Mantovalou, I.; Kanngießer, B.; Fondell, M.; Eckert, S.; Dykstra, C.; Smith, L. E.; Vura-Weis, J.; Mirica, L. M.; van der Veen, R. M. Ground- and Excited-State Structure and Spin State of a Nickel Bipyridine Photocatalyst Revealed by X-ray Absorption Spectroscopy. Submitted, ChemRxiv preprint: https://chemrxiv.org/engage/chemrxiv/article-details/63e47cf6a8f79476ca7916c0.

Publications:

100.  Bouley, B. S.; Garvey, I. J.; Na, H.; Chae, J. B.; Mirica, L. M.* Anagostic Axial Interactions Inhibit Cross‐Coupling Catalytic Activity in Square Planar Pyridinophane Nickel Complexes. ChemCatChem 2024, https://doi.org/10.1002/cctc.202301677

99.  Griego, L.; Chae, J. B.; Mirica, L. M.* A bulky 1,4,7-triazacyclononane and acetonitrile, a Goldilocks system for probing the role of NiIII and NiI centers in cross-coupling catalysis. Chem 2023, https://doi.org/10.1016/j.chempr.2023.11.008

98. Yu, Z.; Blade, G.; Bouley, B. S.; Dobrucka, I. T.; Dobrucki, L. W., Mirica, L. M. Coordination Chemistry of Sulfur-containing Bifunctional Chelators: Towards in vivo Stabilization of 64-Cu PET Imaging Agents for Alzheimer’s Disease. Inorg. Chem. 2023, 10.1021/acs.inorgchem.3c02929.

97. Westawker, L. P.; Khusnutdinova, J. R.; Wallick, R. W.; Mirica, L. M. Palladium K-edge XAS studies on Controlled Ligand Systems. Inorg. Chem. 2023. 62, 51, 21128–21137. https://doi.org/10.1021/acs.inorgchem.3c03032

96. Hu, C. -H.; Chae, J. B.; Mirica, L. M.* Improved Synthesis of Chiral 1,4,7-Triazacyclononane Derivatives and Their Application in Ni-catalyzed Csp3-Csp3 Kumada Cross-coupling. Helv. Chim. Acta. 2023, accepted. 10.1002/hlca.202300170

Scott Denmark 70th Birthday Special Collection

95. Blade, G.; Wessel, A. J.; Terpstra K.; Mirica, L. M.* Pentadentate and Hexadentate Pyridinophane Ligands Support Reversible Cu(II)/Cu(I) Redox Couples. Inorganics. 2023, 11, 11, 446. https://doi.org/10.3390/inorganics11110446

Special issue on the bioinorganic chemistry of copper.

94. Chakrabarti, S; Woods, T. J.; Mirica, L. M.* Insights into the Mechanism of CO2 Electroreduction by Molecular Palladium-Pyridinophane Complexes. Inorg. Chem. 2023, 62, 41, 16801–16809. https://doi.org/10.1021/acs.inorgchem.3c02236

93.  Yu, Z.; Moshood, Y.; Wozniak, M. K.; Patel, S.; Terpstra, K.; Llano, D. A.; Dobrucki, L. W.; Mirica, L. M.;* Amphiphilic Molecules Exhibiting Zwitterionic Excited-State Intramolecular Proton Transfer and Near-Infrared Emission for the Detection of Amyloid β Aggregates in Alzheimer’s Disease. Chem. Eur. J. 2023, e202302408, https://doi.org/10.1002/chem.202302408.

92. DiMucci, I. M.; Titus, C. J.; Nordlund, D.; Bour, J. R.; Chong, E.; Grigas, D. P.; Hu, C.-H.; Kosobokov, M. D.; Martin, C. D.; Mirica, L. M.; Nebra, N.; Vicic, D. A.; Yorks, L. L.; Yruegas, S.; MacMillan, S. N.; Shearer, J.; Lancaster, K. M. Scrutinizing Formally NiIV Centers through the Lenses of Core Spectroscopy, Molecular Orbital Theory, and Valence Bond Theory. Chem. Sci. 2023, 14, 6915-6929, https://doi.org/10.1039/D3SC02001K.

91. Hu, C. -H., Kim, S. -T., Baik, M. -H., Mirica, L. M. Nickel–Carbon Bond Oxygenation with Green Oxidants via High-Valent Nickel Species, J. Am. Chem. Soc. 2023, 145, 20, 11161–11172, https://doi.org/10.1021/jacs.3c01012.

90.  Torabi, S.-F.; Wu, Y.; Lake, R. J.; Hong, S.; Yu, Z.; Wu, P.; Yang, Z.; Ihms, H.; Nelson, N.; Guo, W.; Pawel, G. T.; Van Stappen, J.; Shao, X.; Mirica, L. M.; Lu, Y.* Simultaneous Fe2+/3+ imaging shows Fe3+ over Fe2+ enrichment in Alzheimer’s disease mouse brain, Sci. Adv. 2023, 9, 16, 1-14, eade7622, https://doi.org/10.1126/sciadv.ade7622.

News Release (UT Austin, College of Natural Sciences): https://cns.utexas.edu/news/research/newfound-link-between-alzheimers-and-iron-could-lead-new-medical-interventions

89.  Bouley, B. S.; Tang, F.; Bae, D. Y.; Mirica, L. M.,* C-H Bond Activation via Concerted Metalation-Deprotonation at a Palladium(III) Center, submitted. Chem. Sci. 2023, 2023, 14, 3800-3808, https://doi.org/10.1039/D3SC00034F.

88.  Chakrabarti, S.; Sinha, S.; Tran, G. N.; Na, H.; Mirica, L. M.;* Characterization of Paramagnetic States in an Organometallic Nickel Hydrogen Evolution Electrocatalyst, Nature Commun. 2023, 14, 905. https://www.nature.com/articles/s41467-023-36609-7.

News release (Illinois News Bureau): https://news.illinois.edu/view/6367/25067302

87.  Terpstra, K.; Wang, Y.; Huynh, T. T.; Bandara, N.; Cho, H.-J.; Rogers, B. E.;* Mirica, L. M.* Divalent 2-(4-Hydroxyphenyl)benzothiazole Bifunctional Chelators for 64Cu PET Imaging in Alzheimer’s Disease, Inorg. Chem., 2022, 61, 20326–20336, https://doi.org/10.1021/acs.inorgchem.2c02740.

86.  Yu, Z.; Guo, W.; Patel, S.; Cho, H.-J.; Sun, L.; Mirica, L. M.;* Amphiphilic Stilbene Derivatives Attenuate the Neurotoxicity of Soluble Aβ42 Oligomers by Controlling Their Interactions with Cell Membranes. Chem. Sci, 2022, 13, 12818-12830, https://doi.org/10.1039/D2SC02654F.

85.  Tran, G. N.; Bouley, B. S.; Mirica, L. M.,* Isolation and Catalytic Reactivity of Mononuclear Palladium(I) Complexes. J. Am. Chem. Soc., 2022, 144, 20008-20015, https://doi.org/10.1021/jacs.2c08765.

84.  Wang, Y.-C.; Rath, N. P., Mirica, L. M.* Allylic Amination of Pd(II)-Allyl Complexes via High-Valent Pd Intermediates. Organometallics, 2022, 41, 2067–2076, https://doi.org/10.1021/acs.organomet.2c00215.

83.  Griego, L.; Woods, T. J.; Mirica, L. M.,* A Five-Coordinate Ni(I) Complex Supported by 1,4,7-Triisopropyl-1,4,7-triazacyclononane. Chem. Comm., 2022, 58, 7360-7363, https://doi.org/10.1039/d2cc02516g.

82.  Iyer, R. R.; Renteria, C. A.; Yang, L.; Sorrells, J. E.; Park, J.; Sun, L.; Yu, Z.; Huang, Y.; Marjanovic, M.; Mirica, L. M.; Boppart, S. A.,* Tracking the binding of multi-functional fluorescent tags for Alzheimer’s disease using quantitative multiphoton microscopy. J. Biophotonics, 2022, e202200105, https://doi.org/10.1002/jbio.202200105.

81.  Huynh, T. T.; Wang, Y.; Terpstra, K.; Cho, H.-J.; Mirica, L. M.;* Rogers, B. E.* 68Ga-Labeled Benzothiazole Derivatives for Imaging Aβ Plaques in Cerebral Amyloid Angiopathy. ACS Omega, 2022, 7, 20339-20346, https://doi.org/10.1021/acsomega.2c02369.

80.  Rana, M.; Cho, H.-J.; Arya, H.; Bhatt, T.; Bhar, K.; Bhatt, S.; Mirica, L. M.; Sharma, A. K.,* Novel Azo-Stilbene and Pyridine-Amine Hybrid Multifunctional Molecules to Target Metal Mediated Neurotoxicity and Amyloid-β Aggregation in Alzheimer’s disease. Inorg. Chem, 2022, 61, 10294-10309, https://doi.org/10.1021/acs.inorgchem.2c00502.

79.  Huang, Y.; Sun, L.; Mirica, L. M.,* Turn-on Fluorescent Sensors for Cu-rich Amyloid β Peptide Aggregates. Sens. Diagn., 2022, 1, 709-713, https://doi.org/10.1039/D2SD00028H.

Graphical abstract: Turn-on fluorescent sensors for Cu-rich amyloid β peptide aggregates

78.  Huang, Y.; Huynh, T. T.; Sun, L.; Hu, C.-H.; Wang, Y.-C.; Rogers, B. E.;* Mirica, L. M.,* Neutral Ligands as Potential 64Cu Chelators for Positron Emission Tomography Imaging Applications in Alzheimer’s Disease. Inorg. Chem., 2022, 61, 4778−4787, https://doi.org/10.1021/acs.inorgchem.2c00621.

77.  Wang, Y.; Huynh, T. T.; Bandara, N.; Cho, H.-J.; Rogers, B. E.; Mirica, L. M.,* 2-(4-Hydroxyphenyl)benzothiazole Dicarboxylate Ester TACN Chelators for 64Cu PET imaging in Alzheimer’s Disease. Dalton Trans. 2022, 51, 1216-1224, https://doi.org/10.1039/D1DT02767K.

76. Na, H.; Mirica, L. M.,* Deciphering the mechanism of the Ni-photocatalyzed C‒O cross-coupling reaction using a tridentate pyridinophane ligand. Nature Commun., 2022, 13, 1313, https://doi.org/10.1038/s41467-022-28948-8.

Behind the paper (from Nature Portfolio Chemistry Community): https://chemistrycommunity.nature.com/posts/deciphering-the-mechanism-of-the- ni-photocatalyzed-c-o-cross-coupling-reaction-using-a-tridentate-pyridinophane-ligand

75.  Magallon, C.; Griego, L.; Hu, C. H.; Company, A;* Ribas, X.;* Mirica, L. M.,* Organometallic Ni(II), Ni(III), and Ni(IV) Complexes Relevant to Carbon-Carbon and Carbon-Oxygen Bond Formation Reactions. Inorg. Chem. Front., 2022, 9, 1016-1022, https://doi.org/10.1039/D1QI01486B.

74.  Sinha, S.; Tran, G. N.; Na, H.; Mirica, L. M.;* Electrocatalytic H2 Evolution Promoted by a Bioinspired (N2S2)Ni(II) Complex. Chem. Comm., 2022, 58, 1143–1146, https://doi.org/10.1039/D1CC05139C.

73.  Wang, Y.; Huynh, T. T.; Cho, H.-J.; Wang, Y.-C.; Rogers, B. E.;* Mirica, L. M.,* Amyloid β-Binding Bifunctional Chelators with Favorable Lipophilicity for 64Cu Positron Emission Tomography Imaging in Alzheimer’s Disease. Inorg. Chem. 2021, 60, 12610–12620, https://doi.org/10.1021/acs.inorgchem.1c02079.

72.  S. H. Gardner, C. J. Brady, C. Keeton, A. K. Yadav, S. C. Mallojjala, M. Y. Lucero, S. Su, Z. Yu, J. S. Hirschi, L. M. Mirica, J. Chan,* A General Approach to Convert Hemicyanine Dyes into Highly Optimized Photoacoustic Scaffolds for Analyte Sensing. Angew. Chem. Int. Ed. 202160, 18860-18865, https://doi.org/10.1002/anie.202105905.

71.  Na, H., Watson, M. B., Tang, F., Rath, N. P., Mirica, L. M.* Photoreductive Chlorine Elimination from a Ni(III)Cl2 Complex Supported by a Tetradentate Pyridinophane Ligand. Chem. Comm., 2021, 57, 7264-7267, https://doi.org/10.1039/D1CC02114A.

70.  Sun, L.; Cho, H.-J.; Sen, S.; Arango, A. S.; Bandara, N.; Huang, Y.; Huynh, T. T.; Rogers, B. E.; Tajkhorshid, E.; Mirica, L. M.,* Amphiphilic Distyrylbenzene Derivatives as Potential Therapeutic and Imaging Agents for the Soluble Amyloid-β Oligomers in Alzheimer’s Disease. J. Am. Chem. Soc. 2021, 143, 10462-10476,https://doi.org/10.1021/jacs.1c05470.

69.  Sinha, S.; Mirica, L. M.,* Electrocatalytic O2 Reduction by an Organometallic Pd(III) Complex via a Binuclear Pd(III) Intermediate. ACS Catal. 2021, 11, 5202-5211, https://doi.org/10.1021/acscatal.0c05726.

68.  Fuchigami, K.; Watson, M. B.; Tran, G. N.; Rath, N. P.; Mirica, L. M.,* Synthesis and Reactivity of (N2P2)Ni Complexes Stabilized by a Diphosphonite Pyridinophane Ligand. Organometallics 2021, 40,2283–2289, https://doi.org/10.1021/acs.organomet.1c00003.

67.  Heberer, N.; Hu, C.-H.; Mirica, L. M.,* 6.09 – High-Valent Ni Coordination Compounds. In Comprehensive Coordination Chemistry III, Constable, E. C.; Parkin, G.; Que Jr, L., Eds. Elsevier: Oxford, 2021; pp 348, https://doi.org/10.1016/B978-0-08-102688-5.00104-5.

66.  Chakrabarti, S.; Sinha, S.; Mirica, L. M.,* 6.10 – High-Valent Pd Coordination Compounds. In Comprehensive Coordination Chemistry III, Constable, E. C.; Parkin, G.; Que Jr, L., Eds. Elsevier: Oxford, 2021; pp 375, https://doi.org/10.1016/B978-0-08-102688-5.00105-7.

65.  Berry, J. F.;* Mirica, L. M.,* 6.01 – Transition Metal Groups 9–11: An Introduction. In Comprehensive Coordination Chemistry III, Constable, E. C.; Parkin, G.; Que Jr, L., Eds. Elsevier: Oxford, 2021; pp 1, https://doi.org/10.1016/B978-0-08-102688-5.00119-7.

64.  Cho, H.-J.; Huynh, S.; Rogers, B. E.;* Mirica, L. M.;* “Successful Design of a Multivalent Bifunctional Chelator for Diagnostic 64Cu PET Imaging in Alzheimer’s Disease”, Proc. Natl. Acad. Sci. U.S.A., 2020, 117, 30928-30933, https://doi.org/10.1073/pnas.2014058117; Altmetric: https://pnas.altmetric.com/details/94868835; highlighted in Synfacts: Trauner, D.; Ko, T., PET Imaging of Alzheimer’s Disease With a 64Cu Multivalent Bifunctional Chelator. Synfacts 2021, 17, 0337, https://doi.org/10.1055/s-0040-1719408.

63.  Luo, J.; Tran, G. N.; Rath, N. P.; Mirica, L. M.* “Detection and Characterization of Mononuclear Pd(I) Complexes Supported by N2S2 and N4 Tetradentate Ligands”, Inorg. Chem. 2020, 59, 15659–15669, https://doi.org/10.1021/acs.inorgchem.0c01938.

62.  Sun L.; Sharma, A. K.; Han, B. H.; Mirica, L. M.;* “Amentoflavone: A Bifunctional Metal Chelator that Controls the Formation of Neurotoxic Soluble Aβ42 Oligomers”, ACS Chem. Neurosci. 2020, 11, 2741–2752, https://doi.org/10.1021/acschemneuro.0c00376, PMID: 32786307, NIHMSID 1646840

61.  Huang, Y.; Cho, H.-J.; Bandara, N.; Sun, L.; Tran, D.; Rogers, B. E.;* Mirica, L. M.;* “Metal-Chelating Benzothiazole Multifunctional Compounds for the Modulation and 64Cu PET Imaging of Aβ Aggregation”, Chem. Sci. 2020, 11, 7789-7799, https://doi.org/10.1039/d0sc02641g, featured on the back cover of the issue.

60.  Schultz, J. W.; Rath, N. P.; Mirica, L. M., Improved Oxidative C–C Bond Formation Reactivity of High-Valent Pd Complexes Supported by a Pseudo-Tridentate Ligand. Inorg. Chem. 2020, 59, 11782-11792, https://doi.org/10.1021/acs.inorgchem.0c01763.

59.  Cho, H.-J.; Sharma, A. K.; Zhang, Y.; Gross, M. L.; Mirica, L. M.;* “A Multifunctional Chemical Agent as an Attenuator of Amyloid and Tau Burden and Neuroinflammation in Alzheimer’s Disease”, ACS Chem. Neurosci. 2020, 11, 1471–1481, https://doi.org/10.1021/acschemneuro.0c00114, PMID 32310630, NIHMSID 1646839; Altmetric: https://acs.altmetric.com/details/80230580

58.  Mirica, L. M.;* Smith, S. M.; Griego, L. “Organometallic Chemistry of High-Valent Ni(III) and Ni(IV) Complexes”, invited book chapter in Nickel Catalysis in Organic Synthesis: Methods and Reactions, Ed. S. Ogoshi, Wiley-VCH, 2019, https://doi.org/10.1002/9783527813827.ch10.

57.  Smith, S. M.; Planas, O.; Gómez, L.; Rath, N. P.; Ribas, X.; Mirica, L. M.;*  “Aerobic C–C and C–O Bond Formation Reactions Mediated by High-Valent Nickel Species”, Chem. Sci., 2019, 10, 10366–10372, https://doi.org/10.1039/c9sc03758f.

Graphical abstract: Aerobic C–C and C–O bond formation reactions mediated by high-valent nickel species

56.  Smith, S. M.; Rath, N. P.; Mirica, L. M.;* “Axial Donor Effects on Oxidatively Induced Ethane Formation from Nickel–Dimethyl Complexes”, Organometallics, 2019, 38, 3602-3609, https://doi.org/10.1021/acs.organomet.9b00438

55.  Ruhs, N. P.; Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M.;* “Mononuclear Organometallic Pd(II), Pd(III), and Pd(IV) Complexes Stabilized by a Pyridinophane Ligand with a C-Donor Group”, Organometallics, 2019, 38, 3834-3843, https://doi.org/10.1021/acs.organomet.9b00505.

54.  Tang, F; Park, S.; Rath, N. P.; Mirica, L. M.;* “Electronic versus Steric Effects of Pyridinophane Ligands in Pd(III) Complexes”, Dalton Trans., 2018, 47, 1151-1158, https://doi.org/10.1039/c7dt04366j.

Graphical abstract: Electronic versus steric effects of pyridinophane ligands on Pd(iii) complexes

53.  Rana, M.; Cho, H.-J.; Roy, T. K.; Mirica, L. M.; Sharma, A. K.;* “Azo-dyes based small bifunctional molecules for metal chelation and controlling amyloid formation”, Inorg. Chim. Acta, 2018, 471, 419-429, https://doi.org/10.1016/j.ica.2017.11.029, PMID: 30344337, PMCID: PMC6191838

52.  Wessel, A. J.; Schultz, J. W.; Tang, F; Duan, H.; Mirica, L. M.;* “Improved Synthesis of Symmetrically & Asymmetrically N-Substituted Pyridinophane Derivatives”, Org. & Biomol. Chem., 2017, 15, 9923 – 9931, https://doi.org/10.1039/c7ob02508d.

Graphical abstract: Improved synthesis of symmetrically & asymmetrically N-substituted pyridinophane derivatives

51.  Sharma, A. K.; Schultz, J. W.; Prior, J. T.; Rath, N. P.; Mirica, L. M.;* “The Coordination Chemistry of Bifunctional Chemical Agents Designed for Applications in 64Cu PET Imaging for Alzheimer’s Disease”, Inorg. Chem., 2017, 56, 13801-13814, https://doi.org/10.1021/acs.inorgchem.7b01883, PMID: 29112419, PMCID: PMC5698879

50.  Bandara, N.;# Sharma, A. K.;# Krieger, S.; Schultz, J. W.; Han, B. H.; Rogers, B. E.;* Mirica, L. M.;* “Evaluation of 64Cu-Based Radiopharmaceuticals that Target Aβ Peptide Aggregates as Diagnostic Tools for Alzheimer’s Disease”, J. Am. Chem. Soc., 2017, 139, 12550-12558, https://doi.org/10.1021/jacs.7b05937, PMID: 28823165, PMCID: PMC5677763

49.  Fuchigami, K.; Rath, N. P.; Mirica, L. M.* “Mononuclear Rhodium(II) and Iridium(II) Complexes Supported by Tetradentate Pyridinophane Ligands”, Inorg. Chem., 2017, 56, 9404-9408, https://doi.org/10.1021/acs.inorgchem.7b01619.

48.  Cascella, B.; Lee, S. G.; Singh, S.; Jez, J. M.;* Mirica, L. M.* “The small molecule JIB-04 disrupts O2 binding in the Fe-dependent histone demethylase KDM4A/JMJD2A” Chem. Comm. 2017, 53, 2174-2177; https://doi.org/10.1039/c6cc09882g.

Graphical abstract: The small molecule JIB-04 disrupts O2 binding in the Fe-dependent histone demethylase KDM4A/JMJD2A

47.  Mendez, D. L.; Babbitt, S. E.; King, J. D.; D’Alessandro, J.; Watson, M. B.; Blankenship, R. E.; Mirica, L. M.; Kranz, R. G.* “Engineered holocytochrome c synthases that biosynthesize new cytochromes c” Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 2235-2240, https://doi.org/10.1073/pnas.1615929114.

Fig. 1.

46.  Waston, M. B.; Rath, N. P.; Mirica, L. M.* “Oxidative C-C Bond Formation Reactivity of Organometallic Ni(II), Ni(III), and Ni(IV) Complexes”, J. Am. Chem. Soc., 2017, 139, 35-38; https://doi.org/10.1021/jacs.6b10303.

45.  Schultz, J. W.; Fuchigami. K.; Zheng, B.; Rath, N. P.; Mirica, L. M.* “Isolated Organometallic Nickel(III) and Nickel(IV) Complexes Relevant to Carbon-Carbon Bond Formation Reactions”, J. Am. Chem. Soc., 2016, 138, 12928-12934; https://doi.org/10.1021/jacs.6b06862.

Abstract Image

44.  Zhou, W.; Watson, M. B.; Zheng, S.; Rath, N. P.; Mirica, L. M.* “Ligand effects on the properties of Ni(III) complexes: aerobically-induced aromatic cyanation at room temperature”, Dalton Trans., 2016, 137, 15886-15893; https://doi.org/10.1039/c6dt02185a.

Graphical abstract: Ligand effects on the properties of Ni(iii) complexes: aerobically-induced aromatic cyanation at room temperature

43.  Orf, G. S.; Saer, R. G.; Niedzwiedzki, D. M.; Zhang, H.; McIntosh, C. L.; Schultz, J. W.; Mirica, L. M.; Blankenship, R. E.* “Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex” Proc. Natl. Acad. Sci. U. S. A., 2016, 113, E4486-E4493, https://doi.org/10.1073/pnas.1603330113.

Fig. 1.

42.  Pedrick, E. A.; Schultz, J. W.; Wu, G.; Mirica, L. M.; Hayton, T. W.* “Perturbation of the O–U–O Angle in Uranyl by Coordination to a 12-Membered Macrocycle”, Inorg. Chem., 2016, 55, 5693-5701; https://doi.org/10.1021/acs.inorgchem.6b00799.

41.  Zhou, W.; Zheng, S.; Schultz, J. W.; Rath, N. P.; Mirica, L. M.* “Aromatic Cyanoalkylation through Double C-H Activation Mediated by Ni(III)”, J. Am. Chem. Soc., 2016, 138, 5777-5780; https://doi.org/10.1021/jacs.6b02405.

Abstract Image

40.  Zhou, W.; Rath, N. P.; Mirica, L. M.* “Oxidatively-induced aromatic cyanation mediated by Ni(III)”, Dalton Trans., 2016, 137, 8693-8695; https://doi.org/10.1039/c6dt00064a.

39.  Zhou, W.; Schultz, J. W.; Rath, N. P.; Mirica, L. M.* “Aromatic Methoxylation and Hydroxylation by Organometallic High-Valent Nickel Complexes”, J. Am. Chem. Soc., 2015, 137, 7604-7607; https://doi.org/10.1021/ jacs.5b04082.

38. Tang, F.; Rath, N. P.; Mirica, L. M.* “Stable Bis(trifluoromethyl)Nickel(III) Complexes”, Chem. Comm., 2015, 51, 3113-3116; https://doi.org/10.1039/c4cc09594d.

Graphical abstract: Stable bis(trifluoromethyl)nickel(iii) complexes

37.  Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M.* “The Conformational Flexibility of the Tetradentate Ligand tBuN4 is Essential for the Stabilization of (tBuN4)PdIII Complexes”, Inorg. Chem., 2014, 53, 13112-13129, https://doi.org/10.1021/ic5023054.

36.  Sharma, A. K.; Kim, J.; Prior, J. T.; Hawco, N. J.; Rath, N. P.; Kim, J.; Mirica, L. M.;* “Small Bifunctional Chelators that Do Not Disaggregate Amyloid β Fibrils Exhibit Reduced Cellular Toxicity”, Inorg. Chem., 2014, 53, 11367-11376, https://doi.org/10.1021/ic500926c.

35.  Zheng, B.; Tang, F.; Luo, J.; Schultz, J. W.; Rath, N. P.; Mirica, L. M.* “Organometallic Nickel(III) Complexes Relevant to Cross-Coupling and Carbon-Heteroatom Bond Formation Reactions”, J. Am. Chem. Soc., 2014, 136, 6499-6504; https://doi.org/10.1021/ja5024749.

Abstract Image

34.  Qu, F.; Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M.* “Dioxygen Activation by an Organometallic Pd(II) Precursor: Formation of a Pd(IV)-OH Complex and Its C-O Bond Formation Reactivity”, Chem. Comm., 2014, 50, 3036-3039; https://doi.org/10.1039/c3cc49387c.

Graphical abstract: Dioxygen activation by an organometallic Pd(ii) precursor: formation of a Pd(iv)–OH complex and its C–O bond formation reactivity

33.  Sharma, A. K.; Pavlova, S. T.; Kim, J.; Kim, J.; Mirica, L. M.;* “The Effect of Cu2+ and Zn2+ on the Ab42 Peptide Aggregation and Cellular Toxicity”, Metallomics, 2013, 5, 1519-1526; https://doi.org/10.1039/c3mt00161j.

Graphical abstract: The effect of Cu2+ and Zn2+ on the Aβ42 peptide aggregation and cellular toxicity

32.  Zhang, Y.; Rempel, D. L.; Zhang, J.; Sharma, A. K.; Mirica, L. M.;* Gross M. L.* “Pulsed hydrogen-deuterium exchange mass spectrometry probes conformational changes in amyloid beta (Aβ) peptide aggregation”, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 14604-14609; https://doi.org/10.1073/pnas.1309175110.

Fig. 1.

31.  Khusnutdinova, J. R.; Mirica, L. M.* “Organometallic Pd(III) Complexes in C-C and C-Heteroatom Bond Formation Reactions”, invited book chapter in C-H Activation and Functionalization, Transition Metal Mediation, Ed. Ribas, X., Royal Society of Chemistry, 2013; https://doi.org/10.1039/9781849737166-00122.

Book cover

30.  Luo, J.; Rath, N. P.; Mirica, L. M.* “Oxidative Reactivity of (N2S2)PdRX Complexes (R = Me, Cl; X = Me, Cl, Br): Involvement of Palladium(III) and Palladium(IV) Intermediate”, Organometallics, 2013, 32, 3343-3353; https://doi.org/10.1021/om400286j.

29.  Khusnutdinova, J. R.; Luo, J.; Rath, N. P.; Mirica, L. M.* “Late First Row Transition Metal Complexes of a Tetradentate Pyridinophane Ligand: Electronic Properties and Reactivity Implications”, Inorg. Chem., 2013, 52,3920-3932, https://doi.org/10.1021/ic400260z.

28.  Mirica, L. M.;* Khusnutdinova, J. R., “Structure and Electronic Properties of Pd(III) Complexes”, Coord. Chem. Rev., 2013, 257, 299-314. https://doi.org/10.1016/j.ccr.2012.04.030.

27.  Cascella, B.; Mirica, L. M.* “Kinetic Analysis of Iron-Dependent Histone Demethylases: a-Ketoglutarate Substrate Inhibition and Potential Relevance to the Regulation of Histone Demethylation in Cancer Cells”, Biochemistry, 2012, 51, 8699-8701, https://doi.org/10.1021/bi3012466.

26.  Tang, F.; Qu, F.; Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M.* “Structural and Reactivity Comparison of Analogous Organometallic Pd(III) and Pd(IV) Complexes”, Dalton Trans., 2012, 41, 14046-14050, https://doi.org/10.1039/C2DT32127K.

Graphical abstract: Structural and reactivity comparison of analogous organometallic Pd(iii) and Pd(iv) complexes

25.  Tang, F.; Zhang, Y.; Rath, N. P.; Mirica, L. M.* “Detection of Pd(III) and Pd(IV) Intermediates during the Aerobic Oxidative C-C Bond Formation from a Pd(II) Dimethyl Complex”, Organometallics, 2012, 31, 6690-6696. https://doi.org/10.1021/om300752w.

24.  Khusnutdinova, J. R.; Qu, F.; Zhang, Y.; Rath, N. P.; Mirica, L. M.* “Formation of the Pd(IV) Complex [(Me3tacn)PdIVMe3]+ through Aerobic Oxidation of (Me3tacn)PdIIMe2 (Me3tacn = N,N’,N’’-trimethyl-1,4,7-triazacyclononane)”, Organometallics, 2012, 31, 4627-4630,https://doi.org/10.1021/om300426r. Featured on the cover of issue 13.

23.  Evangelio, E.; Rath, N. P.; Mirica, L. M.* “Cycloaddition Reactivity Studies of First Row Transition Metal-Azide Complexes and Alkynes: An Inorganic Click Reaction for Metalloenzyme Inhibitor Synthesis”, Dalton Trans., 2012, 41, 8010-8021, https://doi.org/10.1039/c2dt30145h. Invited contribution for the “New Talent Americas” issue.

Graphical abstract: Cycloaddition reactivity studies of first-row transition metal–azide complexes and alkynes: an inorganic click reaction for metalloenzyme inhibitor synthesis

22.  Sharma, A. K.; Pavlova, S. T.; Kim, J.; Finkelstein, D.;Hawco, N. J.; Rath, N. P.; Kim, J.; Mirica, L. M.* “Bifunctional Metal-Binding Compounds for Controlling the Metal-Mediated Aggregation of the Ab42 Peptide”, J. Am. Chem. Soc., 2012, 134, 6625-6636, https://doi.org/10.1021/ja210588m.

Abstract Image

21.  Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M.* “The Aerobic Oxidation of a Pd(II) Dimethyl Complex Leads to Selective Ethane Elimination from a Pd(III) Intermediate”, J. Am. Chem. Soc., 2012, 134, 2414-2422, https://doi.org/10.1021/ja210841f.

Abstract Image

20.  Luo, J.; Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M.* “Unsupported d8-d8 Interactions in Cationic PdII and PtII Complexes: Evidence for a Significant Metal-Metal Bonding Character”, Chem. Comm., 2012, 48, 1532-1534, https://doi.org/10.1039/c1cc15420f. Invited contribution for the “Emerging Investigators” issue.

Graphical abstract: Unsupported d8–d8 interactions in cationic PdII and PtII complexes: evidence for a significant metal–metal bonding character

19. Luo, J.; Rath, N. P.; Mirica, L. M.* “Dinuclear Co(II)Co(III) Mixed-Valence and Co(III)Co(III) Complexes with N- and O- Donor Ligands: Characterization and Water Oxidation Studies”, Inorg. Chem., 2011, 50,6152-6157, https://doi.org/10.1021/ic201031s.

18. Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M.* “Dinuclear Pd(III) Complexes with a Single Unsupported Bridging Halide Ligand: Reversible Formation from Mononuclear Pd(II) or Pd(IV) Precursors”, Angew. Chem. Int.Ed., 2011, 50, 5532-5536, https://doi.org/10.1002/anie.201100928.

image

17.  Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M.* “Stable Mononuclear Organometallic Pd(III) Complexes and Their C-C Bond Formation Reactivity”, J. Am. Chem. Soc., 2010, 132, 7303-7305; https://doi.org/10.1021/ja103001g. Featured as “News of the Week” in Chem. & Eng. News, 2010, 88, 21, 9.

Abstract Image

Publications from Postdoctoral and Ph.D. Studies

16. Verma, P.; Weir, J.; Mirica, L. M.; Stack, T. D. P.* “Tale of a Twist: Magnetic and Optical Switching in Copper(II) Semiquinone Complexes”, Inorg. Chem., 2011, 50,9816-9825; https://doi.org/10.1021/ic200958g, PMID: 2169132

15.  Op’t Holt, B. T.; Vance, M. A.; Mirica, L. M.; Heppner, D. E.; Stack, T. D. P.,* Solomon E. I.* “Reaction Coordinate of a Functional Model of Tyrosinase: Spectroscopic and Computational Characterization”, J. Am. Chem. Soc., 2009, 131, 6421-6438; https://doi.org/10.1021/ja807898h.

14. Humphreys, K. J.; Mirica, L. M.; Wang Y.; Klinman, J. P.* “Galactose Oxidase as a Model for Reactivity at a Copper Superoxide Center”, J. Am. Chem. Soc.2009131, 4657-4663, https://doi.org/10.1021/ja807963e.

13.  Mirica, L. M.; McCusker, K. P.; Munos, J. W.; Liu, H. W.; Klinman, J. P.* “Probing the Nature of Reactive Fe/O2 Intermediates in Non-Heme Iron Enzymes through 18O Kinetic Isotope Effects”, J. Am. Chem. Soc., 2008, 130, 8122-8123. https://doi.org/10.1021/ja800265s.

Abstract Image

12.  Mirica, L. M.; Klinman, J. P.* “The Nature of O2 Activation by the Ethylene-Forming Enzyme ACC Oxidase”, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 1814-1819, https://doi.org/10.1073/pnas.0711626105.

Fig. 5.

11.  Welford, R. W. D.; Lam, A.; Mirica, L. M.; Klinman, J. P.* “Partial Conversion of Hansenula polymorpha Amine Oxidase into a ‘Plant’ Amine Oxidase: Implications for Copper Chemistry and Mechanism”, Biochemistry, 2007, 46, 10817-10827, https://doi.org/10.1021/bi700943r.

10.  Thrower, J. T.; Mirica, L. M.; McCusker, K. P.; Klinman, J. P.* “Mechanistic Investigations of 1-Aminocylcyclopropane 1-Carboxylic Acid Oxidase with Alternate Cyclic and Acyclic Substrates”, Biochemistry, 2006, 45, 13108-13117, https://doi.org/10.1021/bi061097q.

9. Mirica, L. M.; Rudd, D. J.; Vance, M.; Solomon, E. I.;* Hedman, B.;* Hodgson, K. O.;* Stack, T. D. P.* “A mh2:h2-Peroxodicopper(II) Complex with a Secondary Diamine Ligand: A Functional Model of Tyrosinase”, J. Am. Chem. Soc., 2006, 128, 2654-2665, https://doi.org/10.1021/ja056740v.

Abstract Image

8. Cole, A. P.; Mahadevan, V.; Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P.* “Bis(m-oxo)dicopper(III) Complexes of a Homologous Series of Simple Peralkylated 1,2-Diamines: Steric Modulation of Structure, Stability, and Reactivity”, Inorg. Chem., 2005, 44, 7345-7364, https://doi.org/10.1021/ic050331i.

7.  Yoon, J.; Mirica, L. M.; Stack, T. D. P.;* Solomon, E. I.* “Variable-Temperature Variable-Field Magnetic Circular Dichroism Studies of Tris-Hydroxy and m3-Oxo Bridged Trinuclear Cu(II) Complexes: Geometric and Electronic Structures of the Native Intermediate of Multicopper Oxidases”, J. Am. Chem. Soc., 2005, 127, 13680-13693, https://doi.org/10.1021/ja0525152.

6.  Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.;* Hodgson, K. O.;* Solomon, E. I.;* Stack, T. D. P.* “Tyrosinase Reactivity in a Model Complex: An Alternative Hydroxylation Mechanism”, Science, 2005, 308, 1890-1892l; https://doi.org/10.1126/science.1112081. Featured as a perspective in Science, 2005, 308, 1876-1877 (https://doi.org/10.1126/science.1113708) and a science concentrate in Chem. & Eng. News, 2005, 83, 26, 38.

5.  Mirica, L. M.; Stack, T. D. P. * “A Tris(m-hydroxy)tricopper(II) Complex as a Model of the Native Intermediate in Laccase and Its Relationship to a Binuclear Analogue”, Inorg. Chem., 2005, 44, 2131-2133, https://doi.org/10.1021/ic048182b.

4.  Pratt, R. C.; Mirica, L. M.; Stack, T. D. P.* “Snapshots of a Metamorphosing Cu(II) Ground State in a Galactose Oxidase-Inspired Complex”, Inorg. Chem., 2004, 43, 8030-8039, https://doi.org/10.1021/ic048904z.

3.  Yoon, J.; Mirica, L. M.; Stack, T. D. P.;* Solomon, E. I.* “Spectroscopic Demonstration of a Large Antisymmetric Exchange Contribution to the Spin-Frustrated Ground State of a D3 Symmetric Hydroxy-Bridged Trinuclear Cu(II) Complex: Ground-to-Excited State Superexchange Pathways”, J. Am. Chem. Soc., 2004, 126, 12586-12595, https://doi.org/10.1021/ja046380w.

2.  Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P.* “Structure and Spectroscopy of Copper–Dioxygen Complexes”, Chem. Rev., 2004, 104, 1013-1046, https://doi.org/10.1021/cr020632z.

1.  Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.;* Hodgson, K. O.;* Solomon, E. I.;* Stack, T. D. P.* “A Stabilized mh2:h2-Peroxodicopper(II) Complex with a Secondary Diamine Ligand and Its Tyrosinase-like Reactivity”, J. Am. Chem. Soc. 2002, 124, 9332-9333, https://doi.org/10.1021/ja026905p.

Abstract Image

Patents:

3. Mirica, L. M.; Yu, Z. Amphiphilic Compounds for Attenuating Neurotoxicity of Amyloid-beta Oligomers and Diagnostic Methods. U.S. Patent provisional application no.­­­­­ 63/389,270, filing date: July 14, 2022.

2. Mirica, L. M.; Na, H., Tridentate Macrocyclic Compounds. U.S. Patent Application Publication US 20230040709 A1, published date February 09, 2023.

1. Mirica, L. M.; Sharma, A. K.; Schultz, J. W. “Metal-Binding Bifunctional Compounds as Diagnostic Agents for Alzheimer’s Disease”, U.S. Patent US 9422286 B2, issued date August 23, 2016.